Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals

Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals

730 Lei (TVA inclus)
Livrare gratis la comenzi peste 500 RON. Pentru celelalte comenzi livrarea este 20 RON.

Cod produs/ISBN: 9783319465401

Disponibilitate: La comanda in aproximativ 4 saptamani

Editura: Springer

Limba: Engleza

Nr. pagini: 758

Coperta: Paperback

Dimensiuni: 17.78 x 4.06 x 25.4 cm

An aparitie: 26 Jun. 2017

 

Description:

This widely praised, first-of-its-kind book has been thoroughly updated, expanded, and enriched with extensive new case material, illustrations, and link-outs to multimedia, practice guidelines, and more. Written and edited by outstanding world experts, this was the first and remains the leading single-source volume on intraoperative neurophysiological monitoring (IOM). It is aimed at graduate students and trainees, as well as members of the operative team, including anesthesiologists, technologists, neurophysiologists, surgeons, and nurses.Now commonplace in procedures that place the nervous system at risk, such as orthopedics, neurosurgery, otologic surgery, vascular surgery, and others, effective IOM requires an unusually high degree of coordination among members of the operative team. The purpose of the book is to help students, trainees, and team members acquire a better understanding of one another’s roles and thereby to improve the quality of care and patient safety. From the reviews of the First Edition: “A welcome addition to reference works devoted to the expanding field of nervous system monitoring in the intraoperative period… will serve as a useful guide for many different health care professionals and particularly for anesthesiologists involved with this monitoring modality…An excellent reference…[and] a helpful guide both to the novice and to the developing expert in this field.” ‐‐Canadian Journal of Anesthesia “Impressive… [The book] is well written, indexed, and illustrated...The chapters are all extensively referenced. It is also very good value at the price....I would recommend this book to all residents and especially to all neuroanesthesiologists. It will make a worthwhile addition to their library.” ‐‐Journal of Neurosurgical Anesthesiology

 

Table of Contents:

 

Section I: Monitoring Techniques

1: Somatosensory-Evoked Potentials

Anatomy and Vascular Supply

Methods

Stimulation

Recording

Intraoperative Variables Affecting SSEPS: Pharmacology and Physiology

Inhalational Anesthetics

Intravenous Anesthetics

Temperature

Tissue Perfusion

Oxygenation/Ventilation

Intracranial Pressure

Other Physiologic Variables

Criteria for Intervention During Intraoperative SSEP Monitoring

Intraoperative Applications for SSEPs

Dermatomal-Evoked Potentials

References

2: Transcranial Motor-Evoked Potentials

Introduction

Motor Pathway Blood Supply

Technical Aspects of MEP Monitoring

Application of MEP Monitoring

Contribution of Anesthesiology to Effective MEP Monitoring

Risk of MEP Monitoring

Conclusion

References

3: Auditory-Evoked Potentials

Anatomy of the Auditory System

Conduction of Auditory Signals from Ear to Cochlea

Neural Components of the Auditory System and Electrical Generators Along the Auditory Pathway

Cochlea: Electrocochleogram

Auditory Pathway from Cochlear Nerve to Midbrain: Auditory Brainstem-Evoked Responses

Primary Auditory Cortex: Mid-Latency Auditory-Evoked Potentials

Vascular Supply of Auditory Pathway Structures

Techniques for Recording Auditory-­Evoked Potentials

Stimulation

Electrocochleogram

Brainstem Auditory-Evoked Potentials

MLAEPs

Anesthetic and Physiologic Considerations for Monitoring of Auditory Brainstem Responses

References

4: Visual-Evoked Potentials

Introduction

Anatomy and Physiology of the Visual System

Eliciting and Recording Flash Visual-Evoked Potentials

Flash Electrographic Response

Flash VEP Response

Techniques for Eliciting F-ERG and F-VEP

Devices for Flash Stimulation

Type of Light Stimulation

Monocular vs. Binocular Stimulation

Pupillary Size and Retinal Luminance

Recording F-ERGs and F-VEPs

Stimulus Color

Stimulus Rate

Recording Electrodes and Their Placement

Analysis Periods for F-ERGs and F-VEPs

Amplifier Settings for Recording F-ERG and F-VEP

Monitoring Criteria

Other IOM Applications with F-ERG and F-VEP

Retinal Stimulation and Intracranial Recording of Responses

Direct Electrical Stimulation of Optic Nerve

Effects of Temperature

Effects of Anesthesia on F-ERGs

Effects of Anesthesia on VEPs

Conclusion

References

5: Deep Brain Stimulation

Introduction

Surgery

The MER Procedure

Target Structures for the Case Examples

Cases and Disorders

Parkinson’s Disease

Procedure and Decisions

Dystonia

Procedure and Decisions

Status Dystonicus

Procedure and Decisions

Conclusion

References

6: Monitoring of Spinal Cord Functions

Introduction

Recording Evoked SCPS for Intraoperative Monitoring

Recording Electric tc-MEPS and Magnetic tc-MEPS for Intraoperative Monitoring

Recording tc-SCPS for Intraoperative Monitoring

Anesthetics Used in Spinal Cord Monitoring

Case Studies (Clinical Applications)

Conclusion

Appendix: Techniques and Physiology

Introduction

The Catheter Electrodes

Origins of Each Component of the Segmental SCPs

References

7: Electromyography

Introduction

General Principle of EMG Monitoring

Cranial Nerve Monitoring Technique

Monitoring Specific Cranial Nerve Function

Cranial Nerves V and VII

Cranial Nerves III, IV, and VI

Cranial Nerves IX, X, XI, and XII

Brainstem Mapping

Mapping Technique

Anesthetic Management

Motor Strip Mapping

Techniques for Assessing Nerve Root Function and Pedicle Screw Placement

Methodology

Anesthetic Management

H-Reflex Testing

H-Reflex Response Acquisition

Anesthetic Management

References

8: The Use of Reflex Responses for IOM

Introduction

Anatomy and Neurophysiology

Spinal Cord Pathophysiology

Spinal Nerve Root Pathophysiology

Late Responses

H-Reflexes: Monosynaptic, Oligosynaptic

Neurophysiologic Basis of H-Reflexes

Gastrocnemius H-Reflex

Gastrocnemius H-Reflex Normal Parameters

Gastrocnemius H-Reflex Stimulation and Recording Techniques

Flexor Carpi Radialis H-Reflex

Flexor Carpi Radialis H-Reflex Background and Normal Parameters

Flexor Carpi Radialis H-Reflex Stimulation and Recording Techniques

Anesthetic Technique

Clinical Correlation of H-Reflexes and F-Responses

Clinical Correlation Summary

Polysynaptic Reflexes

Sacral Reflex

Intraoperative Application of BCRs

Monosynaptic and Polysynaptic Reflexes: Selective Dorsal Root Rhizotomy

Background

Technical Summary

Blink Reflex

Lower Extremity Intralimb and Interlimb Polysynaptic Reflexes

Conclusion

References

9: Brain and Spinal Cord Mapping

Introduction

Presurgical Mapping

Mapping During Awake Craniotomies

Location of the Central Sulcus by SSEP Polarity Reversal

Location of the Primary Motor Cortex with Electrical Stimulation

Subcortical Mapping

Spinal Cord Mapping

Conclusions

References

10: EEG Monitoring

Introduction

The Genesis of the EEG

Cytoarchitecture

Control of Rhythm

EEG Signal Acquisition

Amplifiers and Filters

Signal Processing

Artifact Mitigation by Software

Time-Domain Methods

Clinical Applications of Time-­Domain Methods

Burst Suppression and Its Quantitation

Frequency-Domain Methods

Spectral Displays in Clinical Practice

Bispectrum

Anesthetic Drugs Impact EEG

Volatile Agents

Nitrous Oxide

Barbiturates and Propofol

Etomidate

Ketamine

Narcotics

Benzodiazepines

Muscle Relaxants

References

11: Clinical Application of Raw and Processed EEG

Introduction

EEG Data Acquisition and Interpretation

Raw EEG

Processed EEG

Clinical Utility of Raw and Processed EEG

Future Directions of EEG Monitoring

Case Presentation

Conclusion

References

12: A Guide to Central Nervous System Near-Infrared Spectroscopic Monitoring

Introduction

Instrumentation

Transcranial NIRS Technology

Regional Cerebral Oxygen Saturation Measurement

Safety Considerations

Technical Considerations

Limitations of Cerebral Oximetry

Rationale for Cerebral NIRS Monitoring

Preoperative Factors

Systemic Arterial Pressure

Systemic Arterial Oxygenation

Systemic Arterial CO2 and pH

Cerebral Blood Flow Obstruction

Temperature

Anesthetic Adequacy

Seizure Activity

Supplemental Cerebral Perfusion

Rationale for Peri-spinal NIRS Monitoring

Conclusions

References

13: Transcranial Doppler Ultrasound

Introduction

Technology

Principles of TCD Measurement

TCD Limitations

Rationale for Cerebral Hemodynamic Monitoring

Cerebral Blood Flow-Velocity Change

Cerebral Autoregulation

Vasomotor Reactivity

Neurovascular Coupling

Cerebral Embolization

Conclusion

References

14: Monitoring of Jugular Venous Oxygen Saturation

Introduction

Rationale for SjvO2 Monitoring

Anatomy of Cerebral Venous Drainage

Technical Aspects of Jugular Venous Oximetry

Placement of Jugular Bulb Catheter

Continuous Fiberoptic Jugular Oximetry Versus Intermittent Sampling

Sampling Rate

Complications

Contraindications

Normative SjvO2 Values and Differential Diagnosis of Abnormal SjvO2 Values

Clinical Applications of SjvO2 Monitoring

Intensive Care Unit Uses of Jugular Venous Oximetry

Traumatic Brain Injury

Aneurysmal Subarachnoid Hemorrhage

Intracranial Arteriovenous Malformation

Intraoperative Uses of Jugular Venous Oximetry

Neurosurgical Anesthesia

Cardiac Surgery

Limitations

Conclusion

References

Suggested Reading

15: Intracranial Pressure Monitoring

Introduction

References

16: IOM Instrumentation Layout and Electrical Interference

Introduction

Basic Electronics and Definitions

Pathway 1: The Skin of the Patient Cskin

Pathway 2: Ambient Sources of Electrical Noise Vnoise

The Basic IOM Recording Circuit

Tissue Physiologic Generator (Vtissue)

Circuit Component: Tissue Between Generator and Electrode (Ztissue)

Circuit Component: Electrode Connection to the Patient + Electrode Components (Zelectrode)

Circuit Component: The Wire Between the Electrode Patient End and Connector End (Zleadwire)

Circuit Component: Amplifier Impedance (Za)

Circuit Component: Amplifier Iso-ground

Understanding Sources of Electrical Interference

Practical Tips

Specifically for the Anesthesiologist

For the IOM Professional

During Patient Setup

When Troubleshooting Electrical Noise

Technical Note: Modern IOM Equipment and Grounding

Recording Pathway: Input Switching

Recording Pathway: Amplifiers

Recording Pathway: Antialiasing Filters

Recording Pathway: A/D Convertors

Recording Pathway: Digital Signal and Computer Processing

Conclusion

References

17: Signal Optimization in Intraoperative Neuromonitoring

Patient-Related Issues

Somatosensory-Evoked Potentials

Peripheral Nerve Disorders

Central Nervous System Dysfunction

Motor-Evoked Potentials

Peripheral Nervous System Disorders

Central Nervous System Dysfunction

Electromyography and Nerve Conduction Studies

Electroencephalography

Anesthetic and Systemic Effects

Somatosensory-Evoked Potentials

Motor-Evoked Potentials

Electromyography

Electroencephalography

Technical Issues

Increased Electrical Noise

Electrical Noise: 60 Hz

Electrical Noise: High Frequency

Electrical Noise: Low Frequency or Intermittent

Electrical Noise: General Strategies

Poor Signal Amplitudes

Recording Technique

Stimulation Technique

Errors of Signal Acquisition

Electrode Plug-In Errors

System Errors

General Principles

Timing of Optimization

Prioritization

Conclusion

References

Section II: Anesthesia Considerations

18: Anesthesia for Awake Neurosurgery

Introduction

Anesthesia and Monitoring for Awake Craniotomy During Tumor Resection

Indications and Patient Selection

Preoperative Evaluation and Preparation

Monitoring

Sedation and Analgesia

Regional Anesthesia

Anesthetic Management

Cortical and Subcortical Mapping and Neurologic Monitoring

Complications

Anesthesia for Awake Neurovascular Procedures

Anesthesia for Awake Deep Brain Stimulation

Anesthesia for Awake Seizure Surgery

Anesthesia for Awake Carotid Surgery

Sedation

Anesthesia

Neurologic Monitoring

Conclusion

References

19: Anesthesia Management and Intraoperative Electrophysiological Monitoring

Impact of IOM Technique and Patient Comorbidity

Mechanism of Drug Action

Anesthetic Effects on the Electroencephalogram

General Effects

Specific Drugs and the EEG

Halogenated Agents

Nitrous Oxide

Propofol

Etomidate

Barbiturates

Benzodiazepines

Dexmedetomidine

Droperidol

Opioids

Ketamine

Anesthesia Selection and EEG

Anesthetic Effects on Evoked Potentials

Effect Based on Location of Synapses

Effect Based on Anesthesia Goals

Amnesia

Unconsciousness

Immobility

Antinociception

Specific Anesthesia Drugs

Halogenated Inhalational Agents

Nitrous Oxide

Intravenous Agents

Sedative-Hypnotics: Propofol

Etomidate

Benzodiazepines

Dexmedetomidine

Barbiturates

Droperidol

Intravenous Antinociception: Opioids

Ketamine

Lidocaine, Magnesium, and Regional Anesthesia

Neuromuscular Blocking Agents

Motor-Evoked Potentials

Facial Nerve

Recurrent Laryngeal Nerve

Peripheral Nerve Monitoring and Pedicle Screw Testing

If NMBA Is Used

Total Intravenous Anesthesia

Physiological Considerations in Anesthesia Management

Conclusion

References

Section III: Clinical Applications

20: Monitoring Applications and Evaluating Changes

Reference

21: Intraoperative Neurophysiological Monitoring for Intracranial Aneurysm Surgery

Introduction

Case Presentation 1: MCA Aneurysm

Which Monitors Should You Consider for the Aneurysm Clipping?

What Do We Expect the Selected Neuromonitoring Modalities to Monitor During This Surgery?

What are Some Drawbacks of Each of the Above Monitors in Relation to This Surgery?

What is the Interpretation of These Neurophysiologic Monitoring Waveforms?

What is the Cause of This Change?

What is the Cause of These Changes?

Case Presentation 2: ICA/Ophthalmic Aneurysm

Should Only Upper Extremity SSEPs and TCMEPs, Only Lower Extremity SSEPs and TCMEPs, or Both Uppe

Case Presentation 3: Basilar Apex Aneurysm

How Does This Aneurysm Location Influence the Choice of Neurophysiologic Monitoring Modalities to

What are the Most Likely Etiologies for This Signal Change?

References

22: Intracranial Arteriovenous Malformation Surgery

Introduction

Case Presentation

References

23: Intraoperative Neurophysiologic Monitoring During Surgery for Supratentorial Mass Lesions

Case: Resection of an Insular Glioma

Risks of Surgery for Insular Tumors and Other Supratentorial Mass Lesions

Preservation of Nonmotor Function Using Mapping and Monitoring Techniques

Motor Mapping and Monitoring

Monitoring Results and Surgical Intervention

Possible Causes of the MEP Change and the Role of the Surgical Interventions

Why Is Neurophysiologic Monitoring Useful?

Conclusion

References

24: Surgery for Infratentorial Mass

Introduction

Resection of a Meningioma in the Right Cerebellopontine Angle

Potential Problems and Structures at Risk

Monitoring

Neurophysiological Monitoring

References

25: Trigeminal Microvascular Decompression

Introduction

Presentation of Clinical Scenarios

Case #1

What was the Cause of This Change? Was it Surgical, Pharmacologic, Physiologic, Positional, or

Case #2

What Could Be the Cause?

Case #3

Is This a Significant Change?

What is the Cause of This Change?

Case #4

What Happened? Is This Related to the Remifentanil Infusion, a Cardiac Incident, Brainstem Manip

Case #5

What is the Problem and What Should Be Done?

Case #6

Conclusion

References

26: Surgery for Hemifacial Spasm

Introduction

Electrophysiology and Pathophysiology of HFS

Anatomy of the Facial Nerve and Etiology of HFS

Imaging in HFS

Operative Technique of Microvascular Decompression of the Facial Nerve

Anesthetic Considerations During MVD for HFS

Principles of Intraoperative Neuromonitoring for HFS

Monitoring for Complications

Case Illustrations

Case 1: Understanding the AMR During MVD of the Facial Nerve

Case 2: “Frozen Shoulder” or Adhesive Capsulitis of the Glenohumeral Joint after MVD in the

Case 3: Inability to Access Brainstem Due to Intravenous Fluid Overload

Case 4: Technical Difficulties with the Inserted Earpiece for Acquiring ABRs

Case 5: Hearing Loss as a Result of MVD for HFS

Case 6: Anesthesia and the AMR

Case 7: Stroke During MVD for HFS

Case 8: Facial Weakness and MVD for HFS

Case 9: Vestibular Nerve Dysfunction (After MVD for HFS)

Case 10: Dysphagia/Hoarseness Following MVD for HFS

References

27: Skull Base Surgery

Introduction

Perioperative Considerations

Goals of IOM During Skull Base Surgery

Modes of Neuromonitoring

Electromyography

Evoked Potentials (SSEP, MEP,VEP, ABR)

Case 1

Differential Diagnosis of ABR Findings

Case Progression

Case 2

Differential Diagnosis of SSEP Findings

Case Progression

Conclusion

References

28: Surgery for Chiari Type I Malformation

Introduction

Anatomy and Pathophysiology

Symptomatology of Chiari I Malformation

Diagnosis of Chiari I Malformation

Operative Technique for Chiari I Malformation

Potential Structures at Risk During Surgery for Chiari I Malformation

Positioning Considerations During Surgery

Principles of Intraoperative Neuromonitoring for Chiari I Malformation Surgery

Case Illustration

Stroke During an Operation for Chiari I Malformation

Team Notes

References

Suggested Reading

29: ENT and Anterior Neck Surgery

Introduction

Outcomes

References

30: Carotid Surgery

Introduction

Case 1

Preoperative: Anesthetic and Neuromonitoring Considerations

Specific Goals in the Anesthetic Management of a Carotid Endarterectomy

Different Possible Monitoring Techniques to Assess Cerebral Blood Flow

Intraoperative Course

Transcranial Doppler Ultrasonography

Case 2

EEG Monitoring

Analysis of the Cause of Intraoperative Neuromonitoring Changes

Management of Changes

Outcome

Conclusion

References

31: Anterior Cervical Spine Surgery

Introduction

Case 1

Case 2

Case 3

Conclusion

References

32: Posterior Cervical Spine Surgery

Introduction

Case Presentation

Discussion

References

33: Surgery for Scoliosis Correction

Introduction

Case Report

Anesthetic

Discussion

Discussion

Discussion

Discussion

Discussion

Discussion

Discussion

Discussion

Discussion

Discussion

Discussion

References

34: Neurophysiological Monitoring in Thoracic Spine Surgery

Monitoring techniques for the prevention of blindness in the prone position are not currently eff

Surgical Approach

Neurological Risks of Thoracic Surgery

Monitoring in Thoracic Spinal Surgery

Case 1

Discussion

Case 2

Discussion

Conclusions

References

35: Intraoperative Neurophysiologic Monitoring for Lumbosacral Spine Procedures

Decompressive Laminectomy With or Without Fusion and Instrumentation

Lumbar Interbody Fusion

Posterior Lumbar Interbody Fusion (PLIF)

Transforaminal Lumbar Interbody Fusion (TLIF)

Anterior Lumbar Interbody Fusion (ALIF)

Extreme Lateral Interbody Fusion (ELIF/XLIF)

Paracoccygeal Transsacral Fixation

Lumbar Microdiscectomy

References

36: Intramedullary Spinal Cord Surgery

Introduction

Neurophysiology

Anesthesia for Neurophysiologic Monitoring

Case 1

History, Clinical Assessment, and Imaging

Surgery and Intraoperative Monitoring

Case Summary Interpretation and Discussion

Case 2

History, Clinical Assessment, and Imaging

Surgery and Intraoperative Monitoring

Case Summary Interpretation and Discussion

Case 3

History, Clinical Assessment, and Imaging

Surgery and Intraoperative Monitoring

Summary, Interpretation, and Discussion

Discussion

References

Suggested Reading

37: Intraoperative Monitoring in Tethered Cord Surgery

Introduction

Case Presentation

Monitoring Modalities

Anesthetic Management

Intraoperative Neuromonitoring

Somatosensory-Evoked Potentials

Transcranial Motor-Evoked Potentials

Electromyography

Sensory-Evoked Potentials

Bladder Pressure Urometry

Bulbocavernosus Reflex

Intraoperative Course

Postoperative Outcome

References

38: Surgery in the Peripheral Nervous System

Objectives

Practical Illustrations of the Application of Operative Recordings

Case 1

Case 2

Summary

References

39: Surgery of the Aortic Arch

Case Presentation

Introduction

Hypothermia and Cerebral Protection During Circulatory Arrest

Temperature Monitoring

Neuroelectrophysiological Monitoring

Acid Base Management on Bypass

Cerebral Oximetry

Transcranial Doppler

Combination of Cerebral Oximetry and Transcranial Doppler

Conduct of the Surgical Repair of the Aortic Dissection

Conclusion

References

40: Electrophysiological Monitoring During Thoracic Aortic Aneurysm Surgery

Introduction

IOM, Time, and Neurological Injury

Spinal Cord Blood Supply

Open Surgical TAA Repair

Monitoring Strategy During Open TAA Surgery

Application of Intraoperative Monitoring to TAA Surgery

Comparison of SSEP and MEP in Aorta Surgery

Endovascular Stent Placement

Hybrid Techniques

IOM Techniques During Thoracic Aortic Aneurysm Surgery

Presentation of Case 1

Discussion

Presentation of Case 2

Discussion

References

41: Monitoring During Cardiopulmonary Bypass

Introduction

Causes of Injury During CPB and Neural Structures at Risk

Case Description

Available Physiologic Monitors

Monitor Noteworthy Changes

Differential Diagnosis

Technical

Physiologic

Pharmacologic

Surgical

Patient Management and Outcome

Conclusion

References

42: Interventional Neuroradiology

Introduction

Neuromonitoring Plan

Anesthetic Management

Interpretation of Data

Case Studies

Conclusions

References

43: Intraoperative Neuromonitoring in Pediatric Surgery

Introduction

Anesthetic Management of Pediatric Surgical Procedures That Require Intraoperative Neurophysiologi

Monitoring Modalities and Development

Somatosensory Evoked Potentials

Transcranial Motor Evoked Potentials

Electromyography

Electroencephalography

Brain Stem Auditory Evoked Responses

Bulbocavernosus Reflex

Common Pediatric Surgical Procedures Utilizing IONM

Posterior Spinal Fusion

Anesthetic Management During Spine Surgery

Dorsal Rhizotomy

Tethered Cord Release

Craniotomy for Tumor/Mass Lesion Resection

Conclusion

References

Suggested Reading

Section IV: Intensive Care

44: Monitoring in the Intensive Care Unit

Introduction

Case 1: Traumatic Brain Injury

Cerebral Oxygenation

Temperature Monitoring

Case 2: Subarachnoid Hemorrhage

Blood Pressure Monitoring

Case 3: Spinal Cord Injury

Monitoring Fluid Status and Cardiac Output

Pulmonary Artery Catheters

Preload Responsiveness

Conclusion

References

45: Epilepsy and Seizures: OR and ICU Applications of EEG

Introduction

Epilepsy

Intensive Care EEG Monitoring

Other EEG Applications in the ICU

Conclusion

References

46: Monitoring Cerebral Blood Flow

Physiology

Mechanisms of Cerebral Blood Flow Regulation

Autoregulation

Cerebrovascular Reserve

Cerebral Blood Flow Measurement and Clinical Applications of Specific Techniques Perioperatively

Stable Xenon CTCBF

Xe133 CBF

Jugular Bulb AVO2 Difference

Thermodilution rCBF

Transcranial Doppler

Vasospasm

Cerebrovascular Reserve

Intracranial Pressure

Brain Death

Vessel Patency

Emboli

Hyperemia

Near-Infrared Spectroscopy Based Monitors of CBF

Arterial Spin Labeling

Computed Tomography Perfusion

Intraoperative Cerebral Blood Flow Monitoring

Indocyanine Green Videoangiography

Monitors of Autoregulation

TCD-Based Autoregulation (Mx)

ICP-Based Autoregulation (Prx)

COx

Conclusion

References

Afterword to First Edition

Future of Monitoring the Nervous System

References

Afterword to First Edition

Future of Monitoring the Nervous System

References

 


An aparitie 26 Jun. 2017
Autor Antoun Koht, Tod B. Sloan, J. Richard Toleikis
Dimensiuni 17.78 x 4.06 x 25.4 cm
Editura Springer
Format Paperback
ISBN 9783319465401
Limba Engleza
Nr pag 758

Clientii ebookshop.ro nu au adaugat inca opinii pentru acest produs. Fii primul care adauga o parere, folosind formularul de mai jos.

Spune-ne parerea ta despre acest produs

Nota acordata produsului:

Notificare prin e-mail cand apar comentarii noi
Scroll